
Combustion and Flame 208 (2019) 219–234 

Contents lists available at ScienceDirect 

Combustion and Flame 

journal homepage: www.elsevier.com/locate/combustflame 

Accounting for uncertainty in RCCE species selection 

Esteban Cisneros-Garibay 

a , Carlos Pantano 

a , c , Jonathan B. Freund 

a , b , ∗

a Mechanical Science & Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, USA 
b Aerospace Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, USA 
c Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA 

a r t i c l e i n f o 

Article history: 

Received 11 March 2019 

Revised 17 May 2019 

Accepted 26 June 2019 

Keywords: 

Chemical model reduction 

Rate-controlled constrained equilibrium 

Uncertainty quantification 

Bayesian model selection 

Autoignition 

a b s t r a c t 

A framework is presented to quantify, based on Bayesian evidence, the relative plausibility of species se- 

lection options in rate-controlled constrained equilibrium (RCCE) reduced chemical models, accounting 

for uncertainty in the kinetic parameters and experimental data used to refine them. This approach bal- 

ances the joint goals of matching available data and avoiding overfitting, which is well-understood to 

limit extrapolative capacity for true prediction. The methodology is applied to homogeneous autoigni- 

tion, where predictions are known to be particularly sensitive to chemical model details, specially at low 

temperatures. It is first introduced for hydrogen–air autoignition using an established mechanism, then 

demonstrated in two applications of methane–air autoignition using the larger GRI-1.2 mechanism. This 

larger mechanism significantly increases the computational cost of model selection (though not of the 

subsequent application in predictions), which is alleviated with a time-scale-guided pre-sorting strategy. 

Uses and extensions of this new formulation are discussed. 

© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Autoignition is an important challenge in combustion, and nu-

erical simulations provide means for furthering our understand-

ng of it, especially in complex flows where experiments are

hallenging or costly. Yet the inclusion of detailed combustion

hemistry in reactive flow simulations is well-known to increase

heir computational expense. Their cost scales linearly with the

umber of transported species for explicit time integration, and

uadratically if it is implicit [1] . This precludes the use of most so-

histicated hydrocarbon mechanisms, which can have over a thou-

and species [2] . Often more restrictive than the cost per time step,

etailed mechanisms, of course, also introduce computational stiff-

ess, with chemical time scales often 10 2 to 10 7 times smaller than

he flow time scales [3] . Methods for chemical model reduction,

s we analyze here, attempt to alleviate this cost while retaining

ccuracy. 

Typically, chemical model reduction methods target one of

wo nominal model levels [4] . High-level skeletal reduction meth-

ds extract suitable smaller chemical networks from the de-

ailed mechanism by removing relatively unimportant species

nd reactions. Specific methodologies include directed rela-
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ion graph (DRG) [4–6] and computational singular perturbation

CSP) [7] methods. Correspondingly, in low-level methods, the ki-

etic rate equations are filtered in some way to suppress or re-

ove fast (and presumably less important) time scales. A reduced

et of represented species is evolved in time, with unrepresented

pecies reconstructed as needed from algebraic relations. These are

enerally known as manifold reduction methods because these al-

ebraic relations define a manifold constraint. Specific methodolo-

ies include intrinsic low-dimensional manifolds (ILDM) [3] , the

uasi-steady state approximation (QSSA) [8] , and rate-controlled

onstrained equilibrium (RCCE) [9] . A multi-stage reduction strat-

gy can be formulated by combining methods from each level with

he goal of maximizing efficiency [10,11] . 

Any reduction incurs approximation errors with respect to the

etailed model. In particular, RCCE reduced-model predictions are

ensitive to the specific choice of represented species [12] . Estab-

ished species-selection approaches use calibration (training) data

n simple canonical reactor configurations to guide selection of

epresented species [13–18] . An issue we address is that these

pecies-selection methodologies all assume that kinetic mecha-

isms are trusted, although it is well-understood that they do

ontain structural and parametric uncertainties [19–21] . Includ-

ng these is necessary to fully assess the accuracy of subsequent

redictions. Furthermore, kinetic uncertainties are understood to

ffect chemical-model reduction, and have been incorporated in

igh-level model reduction strategies before. For example, Galassi

t al. [22] extended a CSP-based skeletal reduction method to
. 
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the case of uncertain rate coefficients. Reactions were retained

according to the probability that they contribute to the rate-

controlling dynamics of selected target species, and it was shown

that skeletal mechanisms are more likely to be deemed acceptable

(according to a user-specified error tolerance) if the uncertainty in

the detailed mechanism is taken into account. Xin et al. [23] ana-

lyzed the predictive uncertainties of skeletal mechanisms obtained

through DRG methods and showed that strong coupling between

discarded reactions can lead to non-monotonic predictive uncer-

tainties with the number of retained reactions. Such high-level ex-

tended reduction strategies are independent from species selection

and predictive uncertainty of RCCE reduction, although the result-

ing mechanisms can serve as a starting point for subsequent RCCE

species selection. 

Of course, parametric uncertainty and model reduction are not

independent. Here we develop and demonstrate a framework that

systematically accounts for kinetic uncertainties concurrently with

species selection. This is applied specifically to RCCE reduction,

and it ultimately quantifies predictive uncertainties for the reduced

model. These different components are joined by Bayesian infer-

ence [24,25] , a widely-used statistical framework that can quan-

tify the relative merits of competing models. It also provides a

means to bring new data into this assessment. Our framework is

related to the high-level skeletal reduction method of Galagali and

Marzouk [26] , also based on Bayesian inference and in which re-

actions are included based both on quantitatively expressed prior

knowledge and their plausibility in the light of new data. It is also

related to the methodology of Hakim et al. [27] , where Bayesian

inference is used to calibrate and select an optimal error model

for a globally-reduced chemistry. The fundamental novelty of our

species selection framework is that reduction is linked with un-

certainty quantification at the low level of the kinetic rate equa-

tions, which has the benefit that cost reduction and predictive un-

certainty can be jointly assessed. The present method is designed

in detail and demonstrated for the commonly used RCCE reduc-

tion, though the general approach for achieving overall predictive

accuracy could be realized in conjunction with other reduction

strategies. 

The approach follows a common model reduction paradigm:

calibration data is used to select species to represent and, in this

case, calibrate uncertain rate parameters in a simple, yet represen-

tative, configuration. Because predicting autoignition in complex

flows is particularly challenging and important, we demonstrate

the approach for autoignition delay times in homogeneous reactive

mixtures. 

The RCCE approach we focus on is summarized in Section 2 ,

including an introduction to its notation, which is important for

subsequent analysis. References are provided to more detailed

descriptions. The new framework for RCCE species selection is

developed in Section 3 . As we shall see, the framework balances

fit-to-data against kinetic-parameter uncertainty to select the

most plausible (determined quantitatively) set of represented

species. This is demonstrated for the relatively simple case of

hydrogen–air combustion in Section 4 . To extend to more com-

plex mechanisms, in Section 5 we integrate a time-scale-based

methodology [18] to manage the large number of candidate sets

of represented species. This enables the application of Bayesian

species selection to methane–air autoignition in Section 6 . Fur-

thermore, the effects of kinetic uncertainties on model size are

quantified in Section 7 . Additional discussion of results, potential

extensions and simplifications, and a summary of the principal

features of our methodology are presented in Section 8 . 

2. Models and their reduction 

This section introduces the basic mathematical notation that

describes full and reduced models. All cases start with a
ombustion mechanism M in which N species in set S, con-

trained by the law of mass action, participate in M elementary

eactions. A model where all species obey differential conservation

aws is a full model . The number of species in a mechanism for

ombustion of practical fuels can exceed hundreds or even thou-

ands. To reduce the cost of representing all species, either the

aw cost or due to numerical stiffness, we seek a reduced model

here only a subset of represented species R evolve according to

onservation laws while the rest obey algebraic equations founded

n chemical equilibrium. These algebraic constraints define a low-

imensional manifold. 

For specificity, the subsequent development will target ignition-

ime prediction. In an experiment, this is typically measured based

n the increase of temperature or a combustion radical. For the

ydrogen–air system of Sections 3 and 4 , the time of maximum H

adical molar fraction z H , 

ign = arg max t z H (t) , (1)

oincides with other criteria [28] . For the methane–air system of

ections 5 through 7 , H (or any particular species) will not nec-

ssarily be in the reduced set R , so we simply use a threshold

emperature T ign : 

ign = { t : T (t) = T ign } . (2)

.1. Full models 

For autoignition, a homogeneous mixture of ideal gases is as-

umed to evolve at constant pressure p and enthalpy h 0 , while the

hemical composition is characterized by the specific molar frac-

ions z = { z i } N i =1 
of the species. These evolve according to 

d z 

dt 
= �( z ;κ) , (3)

ith initial condition z (0) = z 0 . The chemical source term �( z ; κ)

s parameterized by the reaction rate coefficients κ = { κi (T ) } M 

i =1 
.

nergy conservation equation imposes an algebraic constraint, 

 

T 
z = h 0 , (4)

here h = { h i (T ) } N 
i =1 

are the species specific enthalpies. In addi-

ion, the specific molar fractions z satisfy the normalization condi-

ion 

 

T z = 1 , (5)

here W = { W i } N i =1 
are the species molecular weights. Detailed ex-

ressions for � are readily available [29,30] . 

It is important to recognize that (3) has N e invariants owing to

he conservation of the N e chemical elements. These are imposed

y the constant element fractions z e = { z e,i } N e i =1 
, which are related

o the species specific molar fractions by the N × N e constant ele-

ent composition matrix E , 

 e = E 

T z . (6)

.2. RCCE reduced models 

RCCE model reduction, including the underlying fundamental

ssumptions, its implementation, and its performance in reactive-

ow simulations, is well-documented [31–34] . Of its various for-

ulations, we follow most closely its original form introduced by

eck and Gillespie [9] . In RCCE, K < N constraints R are evolved in

ime, each of which can be either (i) an individual (represented)

pecies [15] , or (ii) a linear combinations of species [35] . Due

o ease of implementation and interpretation of results, we work

xclusively with constraints of the first type, though the subse-

uent development is independent of this choice and can be eas-

ly applied to generalized linear constraints (as further discussed in
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Fig. 1. Ignition-time predictions and measurements [37] for two RCCE species se- 

lection choices with standard kinetic parameter values. 

w  

i  

b  

r  

t  

l  

l  

R  

a  

t

 

m  

T  

t  

w  

p  

H  

t  

w  

c  

i  

e  

r  

e  

a  

s  

w  

f  

a  

R

3

 

p  

t  

P  

t  

i  

i  

f  

n  

a  

o  

n  
ection 8 ). The specific molar fractions r of the represented species

 are related to z through 

 = R 

T z , (7) 

here R is an N × K constant-valued matrix with columns corre-

ponding to the unit vectors of the represented species. For exam-

le, if only the k th and � th species are represented, R is zero except

or R k, 1 = R �, 2 = 1 . Combined, (3) and (7) form an evolution system

or the reduced state, 

d r 

dt 
= R 

T �( z ;κ) , (8)

ith initial condition r (0) = r 0 = R 

T z 0 . The immediate challenge is

hat evaluation of �( z ; κ) requires an estimate of the full compo-

ition vector z based on the reduced representation r (along with

he pressure p , enthalpy h 0 , and element fractions z e ). This re-

onstruction is defined by the constrained-equilibrium composition

 c = { z c,i } N i =1 
, 

 = z c ( r ; p, h 0 , z e ) , (9)

hich maximizes the entropy of the mixture, subject to the con-

traints (4) through (7) , 

 c,i = 

1 

W 

exp 

( 

−g i (T ) 

RT 
+ 

N e ∑ 

n =1 

E i,n γn + 

K ∑ 

k =1 

R i,k μk 

) 

, (10) 

here R is the universal gas constant and g i (T ) = h i (T ) − T s i (T )

or i = 1 , . . . , N, are the species standard Gibbs free energies, with

 i ( T ) their corresponding specific entropies. The temperature T , the

ean molecular weight W , the element potentials γ n for n =
 , . . . , N e , and the constraint potentials μk for k = 1 , . . . , K, en-

orce (4) through (7) [9] . 

Existing methodologies for selection of R are typically based

n how well candidate sets reproduce full-model data [15,17,18] .

hile effective, they disregard uncertainty in the rate coefficients

nd the data used to guide selection. This leads to the following

wo drawbacks: (i) that the reduction process is over-constrained;

nd (ii) that selected models lack predictive capacity, which is

ost assured only if all knowledge about the models, their pa-

ameters and the calibration data is incorporated. Including uncer-

ainty in species selection is addressed in the following. 

. Species selection accounting for uncertainty 

The proposed framework selects represented species R , ac-

ounting for the uncertainty of the rate parameters in � in (8) .

his affects what is deemed the best (or most justified) reduced

odel and is a key step in quantifying their predictive uncertainty.

he approach is most easily introduced by example, for which

e consider an isobaric, adiabatic, homogeneous hydrogen–air re-

ctor. The combustible mixture is taken to include N = 9 species

 = { H 2 , O 2 , H , O , OH , HO 2 , H 2 O 2 , H 2 O , N 2 } and thus N e = 3 ele-

ents E = { H , O , N } , and reactions are modeled by the Saxena &

illiams [36] mechanism. 

.1. Objective, illustrated for H 2 -air autoignition 

We predict autoignition time τ
ign 

(1) at stoichiometric, near-

tmospheric conditions, and different initial temperatures, for

hich measured τd 
ign 

[37] are shown in Fig. 1 . (A case for which

o such data is available is considered in Section 6 .) An RCCE re-

uced model with represented species R is designed to repro-

uce the data τd 
ign 

. A priori, however, it is unclear how to best

elect R . For this illustration, intuition and experience can be a

uide, though this is not the case in general. We consider the two

andidates sets R a = { H , O , H , HO } and R = { H , O , H , OH } ,
2 2 2 b 2 2 
hich differ only in a single species. This is tantamount to select-

ng one of two radicals (OH or HO 2 ) to augment what we take to

e the baseline set R 0 = { H 2 , O 2 , H } . The predictions of the two

educed models are shown in Fig. 1 as a function of the initial

emperature of the mixture T 0 . This example makes the species se-

ection challenge concrete: changing a single represented species

eads to obviously different ignition times. Of the two candidates,

 a (which includes HO 2 rather than OH) matches the data better,

nd so without additional considerations R a would be considered

he best choice. 

This conclusion, however, disregards any uncertainty in the

echanism, which we have tacitly assumed to be fully trusted.

he effect of uncertainty on species selection will be quantified in

he following. RCCE models will then be built upon mechanisms

ith uncertain kinetic parameters. In a simple model-fitting ap-

roach, we could choose values that lead to best matches of data.

owever, the ability to reproduce particular data does not guaran-

ee that the RCCE models will extrapolate to different scenarios,

hich is the ultimate goal of prediction. Indeed, reproducing data

an be achieved with any interpolating functions; designing chem-

stry models to reflect the underlying kinetics should grant them

xtrapolative capacity. A complicating factor is that their rate pa-

ameters, which come from auxiliary sources, such as shock tube

xperiments or ab initio theoretical calculations, bring in their own

dditional uncertainties. This information is also disregarded by

imple model fitting, yet it is important for prediction and couples

ith species selection. The following subsections develop a means

or using kinetic uncertainties in conjunction with reduced-model

ccuracy to inform the species selection that defines a particular

CCE model. 

.2. Quantifying relative confidence in candidate species 

The immediate goal is to quantify the evidence supporting any

articular set of represented species, R a or R b in this example, as

he best for any available data and kinetic-parameter uncertainties.

robabilities, interpreted as degrees-of-belief, are well-understood

o quantify this [24] and applying such quantification to phys-

cal systems is becoming increasingly common [38–40] . Follow-

ng the standard Bayesian perspective [24,25] , the degree-of-belief

or each candidate R , before comparing with data τd 
ign 

, is de-

oted as P (R | I) , representing our prior confidence in R , occasion-

lly referred to as prior model probability [41] . It is conditioned

nly on the auxiliary information I that frames the range of sce-

arios. For chemical kinetics, I thus includes physical reasoning,



222 E. Cisneros-Garibay, C. Pantano and J.B. Freund / Combustion and Flame 208 (2019) 219–234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

t  

{  

b  

w

3

 

s  

p

τ  

W  

t  

t  

a  

b  

σ  

m  

a

P

 

T  

i  

t  

i  

y

P

 

 

b  

H  

a  

n  

t

τ  

w  

r  

l  

l

P

 

w  

c  

r  

e  

r

measurement error estimates from rate experiments, and experi-

ence with, say, related mechanisms or quantities of interest (e.g.,

flame speeds or extinction limits). Therefore, P (R | I) serves to

bridge intuition and qualitative (possibly even subjective) knowl-

edge with quantitative and reportable input [24] . For example,

established intuitive guidance for RCCE species selection [42] —to

represent species that evolve slowly, occur in significant con-

centrations, or are thought to participate in rate-controlling

pathways—can be built into the framework through P (R | I) , with

candidate species that satisfy these requirements being assigned

a relatively high prior probability. The extensive reasoning behind

prior development is well-established [24,25] and not discussed

extensively here since it is not central to our goals. Rather, we

simply recognize that it should encompass all available informa-

tion aside from the measured τd 
ign 

, and for our illustration provide

uniform priors to all candidates. 

The next step is to refine the relative confidence in particu-

lar candidate species given data τ d 
ign 

and kinetic-parameter un-

certainty. Given τd 
ign 

, the updated relative confidence in candi-

date species is P (R | τd 
ign 

, I) , which is a posterior degree-of-belief,

or plausibility, regarding candidate R . It is also referred to as

posterior model probability [41] . The candidate with the highest

P (R | τd 
ign 

, I) is the most supported. Note that the posterior is also

conditioned on I . Therefore, our conclusions will only be as general

as I allows them to be, effectively constraining what best means. In

this illustration, I includes our selected starting-point represented

species R 0 , upon which candidate representations are constructed.

The selected species in this case are the best to augment R 0 . 

3.3. Supporting evidence for candidate species 

3.3.1. Bayesian evidence 

As expressed, the posterior P (R | τd 
ign 

, I) (for R = R a or R b in

this example) might seem abstract, but it can be evaluated via

Bayes’ theorem [24,25] , which relates it to the prior P (R | I) : 

P (R | τd 
ign , I) = 

P ( τd 
ign 

| R , I) P (R | I) 
P ( τd 

ign 
| I) . (11)

The numerator of (11) is our principal concern. The P ( τd 
ign 

| R , I)

multiplying the prior P (R | I) modifies our degree-of-belief sup-

porting R based on how well a particular R reproduces τd 
ign 

. As

such, it is the evidence (also refered to as model evidence [27] ),

and unlike P (R | τd 
ign 

, I) it can be directly evaluated. A complica-

tion is that it also incorporates (in I ) the uncertainty in the kinetic

parameters κ, which must be included in the evaluation. These

too have relative probabilities, based on a corresponding degree-of-

belief P ( κ | I ) about their true values. Even simple ± error specifi-

cations can be expressed in corresponding specific forms for P ( κ | I ),

as will be considered in Section 3.3.3 . For now, integrating over all

κ yields an expression for the evidence in (11) that includes the

kinetic uncertainty P ( κ | I ): 

P ( τd 
ign | R , I) = 

∫ 
P ( τd 

ign | κ, R , I ) P ( κ | I ) d κ. (12)

The first term in the integrand is the likelihood , so-called because

it quantifies how likely it is that a reduced model with particular

R and κ matches τd 
ign 

. Specific formulas for the likelihood will also

be considered subsequently in Section 3.3.2 . 

Since the denominator in (11) does not depend on R , it is not

explicitly needed to compare our relative confidence in candidate

species. Instead, we can infer its value from the normalization con-

dition ∑ 

R∈A 

P (R | τd 
ign , I) = 1 , (13)
here A is the set of all candidate sets of represented species. For

he current hydrogen autoignition demonstration it is simply A =
R a , R b } . This normalization shows that candidate models can only

e compared; if only one R is available, it is necessarily the best

ith P (R | τd 
ign 

, I) = 1 . 

.3.2. Errors and likelihood 

The likelihood function is a key component of the formulation

ince it quantifies the mismatch εign between a reduced-model

rediction τ
ign 

( κ, R ) and the corresponding data τ d 
ign 

, 

d 
ign = τign ( κ, R ) + ε ign . (14)

e assume that the ignition data is also accompanied by an es-

imate of its uncertainty σ ign . Taking measurement uncertainty as

he only source of mismatch between data and model predictions,

nd in the absence of any additional information, we take εign to

e normally distributed with zero mean and standard deviation

ign , which maximizes statistical entropy in a way that reflects

aximal ignorance about other aspects of the mismatch [25] . This

ssumption leads to the likelihood 

 (τ d 
ign | κ, R , I) = 

1 √ 

2 πσ 2 
ign 

exp 

{
− 1 

2 σ 2 
ign 

[ 
τ d 

ign − τign ( κ, R ) 
] 2 }

. 

(15)

o generalize (15) to N ign measurements (e.g., the ignition times

n Fig. 1 ) it is common practice to assume, for simplicity, that

he experimental errors εign, i , i = 1 , . . . , N ign , are independent and

dentically distributed with standard deviations σ ign, i [38] , which

ields 

 ( τd 
ign | κ, R , I) = 

N ign ∏ 

i =1 

1 √ 

2 πσ 2 
ign ,i 

× exp 

{
− 1 

2 σ 2 
ign ,i 

[ 
τ d 

ign ,i − τign ,i ( κ, R ) 
] 2 }

. (16)

This additive form of the error model (14) is a choice made

ased on objectives, and any particular conclusions are tied to it.

ere it is motivated by its simplicity for illustration; the goals of

ny particular application might suggest different forms. An alter-

ative form that has been used in combustion chemistry uncer-

ainty quantification is multiplicative [38] , 

d 
ign = e ε ign τign ( κ, R ) (17)

hich is useful when the data and quantity of interest span a wide

ange or must have the same sign. For N ign measurements, and fol-

owing the same assumptions as for the additive error model (14) ,

eads to the likelihood 

 ( τd 
ign | κ, R , I) = 

N ign ∏ 

i =1 

1 √ 

2 πσ 2 
ign ,i 

× exp 

⎧ ⎨ 

⎩ 

− 1 

2 σ 2 
ign ,i 

log 

[ 

τ d 
ign ,i 

τ
ign ,i 

( κ, R ) 

] 2 
⎫ ⎬ 

⎭ 

, (18)

hich is used in Section 5 . We do not delve into more sophisti-

ated error modeling, which would depend on the specifics of cor-

esponding experiments, or model inadequacies that lead to model

rrors as a source of mismatch. These effort s are challenging and

equire considerable modeling [43] . 
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.3.3. Parametric uncertainty 

A specific form of P ( κ | I ) is also needed to evaluate (12) , which

n turn requires specification of what exactly κ represents. Re-

ctions are accompanied by parameterized forms (e.g., Arrhenius,

hird-body, or falloff) for their rate coefficients k = { k i } M 

i =1 
. For the

ominal rate coefficient value k 0 
i 
, taken to be its recommended pa-

ameterization, a normalized random variable κ i is used to repre-

ent its uncertainty relative to its true (unknown) value k i , 

i = 

log 
(
k i /k 0 

i 

)
log f i 

, (19) 

here f i > 1 is the corresponding multiplicative uncertainty fac-

or. These factors are often inferred in estimates of k i uncertainty

44–46] . As formulated, the most plausible values of the rate coef-

cient are taken to lie between k 0 
i 
/ f i and f i k 

0 
i 
. Without additional

nformation, taking a provided uncertainty range in k i to be a stan-

ard deviation yields a Gaussian distribution, 

 ( κ | I) = 

M ∏ 

i =1 

1 √ 

2 π
exp 

(
−κ2 

i 

2 

)
, (20)

ased, as for the likelihood, on maximizing statistical en-

ropy [24,25] . 

A more thorough treatment of rate uncertainties would involve

ormulating states of knowledge of the individual Arrhenius and

ny falloff or other parameters. This could be done using existing

rameworks that infer the correlation structure for the Arrhenius

arameters from the recommended nominal values and provided

ncertainty factors [46,47] . However, (20) is simpler for introduc-

ng the method, and if deemed necessary, generalizing to these

ore involved approaches should be straightforward. 

.4. Calibration and overfitting 

In addition to informing species selection ( R a versus R b in this

xample), data such as τ d 
ign 

, when available, can be used to infer

he relative likelihood of κ values. This can be utilized to improve

he accuracy of any R and refine bounds on its predictive uncer-

ainty by refining P ( κ | I ), not just selecting a best-fit value as for

he simplest model fitting. This calibration is also achieved through

he application of Bayes’ theorem [24,25] : 

 ( κ | τd 
ign , R , I) = 

P ( τd 
ign 

| κ, R , I ) P ( κ | I ) 
P ( τd 

ign 
| R , I) 

. (21)

he updated state of knowledge P ( κ | R , I) is then the κ posterior ,

hich now depends on R , and is thus linked to that model. 

A risk of any calibration is overfitting, meaning that the model

arameters become too strongly tied to the available data. This is

ndesirable since it diminishes confidence in the extrapolative ca-

acity of the model, which is the ultimate goal of any model. Over-

tting is countered in Bayesian model selection, guarding against

he selection of overfitted models. This constraint quantifies the

implifying principle of Occam’s razor: of all candidate models

ith equal accuracy, the most robust—least slavishly linked to

ata—is favored. 

That the evidence (12) counters overfitting can be seen by de-

omposing its logarithm F ( τd 
ign 

, R ) ≡ log P ( τd 
ign 

| R , I) [48] , 

F ( τd 
ign , R ) = 

∫ 
log 

[
P ( τd 

ign | κ, R , I) 
]

P ( κ | τd 
ign , R , I) d κ︸ ︷︷ ︸ 

U( τd 
ign 

,R ) 

−
∫ 

log 

[ 

P ( κ | τd 
ign 

, R , I) 

P ( κ | R , I) 

] 

P ( κ | τd 
ign , R , I) d κ

︸ ︷︷ ︸ 
S( τd 

ign 
,R ) 

. (22) 
he first term, U( τd 
ign 

, R ) , rewards the fit-to-data achieved using

 , averaged over the posterior PDF of the uncertain kinetic pa-

ameters (which in turn depends on their prior PDF through (21) ).

he second term, S( τd 
ign 

, R ) , is the information entropy change

etween the prior and posterior PDFs [25] , which measures the

mount of information gained about the uncertain parameters

rom the data. The larger this term, the more adjustment of model

arameters is required to achieve the corresponding data-match

( τd 
ign 

, R ) , and the more it risks being enslaved to that particu-

ar data. Because S( τd 
ign 

, R ) penalizes overfitting, it is referred to

s an Occam factor: it distinguishes between models that achieve

he same fit-to-data U( τd 
ign 

, R ) by favoring those that rely less

n calibration. Occam factors have a physical interpretation. Phys-

cal understanding—less assumptions—restricts the prior range of

lausible model-parameter values, and new data governed by this

ame physics will be less likely to further restrict the parame-

ers [24] . For (22) , this would mean that P ( κ | τ d 
ign 

, R , I) ≈ P ( κ | I) ,
o S( τd 

ign 
, R ) ≈ 0 . In contrast, a model with little physical basis

ould not have corresponding restriction and thus would have

roader priors. These would allow the calibration procedure to find

values that lead to close match with the data, resulting in rela-

ively high U( τd 
ign 

, R ) . However, new data would then be highly

nformative about the uncertain parameters, yielding large Occam

enalty S( τd 
ign 

, R ) , countering gains in U( τd 
ign 

, R ) . 

To simply illustrate how the Occam factor in (22) functions, we

ssume (crudely) that the reduced-model ignition-time predictions

epend linearly in the uncertain parameters, 

ign ≈ τ0 
ign + L T κ, (23) 

here the intercept τ0 
ign 

and the coefficients L , if specific values

ere needed, could be obtained by Taylor expansions or least-

quares fitting. This linearization is tantamount to assuming a

aussian posterior distribution (21) with covariance matrix 

∗ = 

[
L�ign L 

T + I 
]−1 

, (24) 

here �ign = diag 
(
σ−2 

ign ,i 

)
for i = 1 , . . . , N ign , and I is the identity

atrix. The mean κ∗ is 

∗ = �∗L�ign 

(
τd 

ign − τ0 
ign 

)
. (25) 

pplying this linearization to S in (22) leads to 

( τd 
ign , R ) = 

1 

2 

‖ κ∗‖ 

2 + 

1 

2 

log 
∣∣�−1 

∗
∣∣, (26)

hich shows two distinct overfitting features penalized. The ‖ κ∗‖ 2 
erm is the penalty for the calibration shifting the mean κ∗ away

rom the κ = 0 of the prior PDF (20) . The further κ∗ moves from

he nominal values, the more it is affected by the data and the

igher the risk of overfitting. The log 
∣∣�−1 ∗

∣∣ term quantifies the

hange in volume from prior to posterior PDF. It thus penalizes

he reduction of parametric uncertainty by the data. The larger this

erm, the more the data restricts parameter values. This also risks

verfitting because if very specific values relative to the prior, are

equired to match the data, then it is less likely to extrapolate. A

hysically-grounded model should change little if calibrated with

dditional data from a corresponding physical system. It should be

mphasized that uncertainty minimization by data is not of itself

etrimental: it is only important when comparing models of sim-

lar prior expectation. The model that can fit the data without re-

tricting its parameters κ is more probable to be accurately extrap-

lative. 

.5. Prediction with uncertainty 

With κ calibrated, we can evaluate the model to make predic-

ions. Because κ is a random variable, the model output τ
ign ( κ, R )
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will be a distribution, so an expectation is a convenient way to ex-

press a particular prediction, 

〈 τign 〉 = 

∫ 
τign ( κ, R ) P ( κ | τd 

ign , R , I) d κ. (27)

For true prediction, we have no data to assess the accuracy of (27) ,

so we rely on the predictive uncertainty, here measured as a stan-

dard deviation from the expected value: 

ˆ σign = 

{ ∫ [
τign ( κ, R ) − 〈 τign 〉 

]2 
P ( κ | τd 

ign , R , I) d κ
} 1 

2 

. (28)

The smaller ˆ σign , the more we trust the prediction 〈 τ
ign 

〉 . A signa-

ture of overfitting can be recognized in (28) : growth of ˆ σign away

from the calibration range indicates lost confidence in the extrap-

olative predictive accuracy of R . 

In some cases, the predictive uncertainty (28) can be decom-

posed into contributions due to measurement uncertainty and a

remainder (model) error. This is possible in general when (i) the

prediction (27) falls well within measurement uncertainty, and (ii)

ˆ σign > σign . As we shall see, it is possible to apply for the H 2 -air

demonstration, and there it does not alter any conclusions. 

4. Demonstration: H 2 -Air Ignition 

4.1. Species priors and supporting evidence 

We demonstrate our framework evaluating reduced model R a 

versus R b for the relatively simple case of H 2 -air autoignition,

given τd 
ign 

from Fig. 1 . Assuming no prior information regarding

the suitability of R a versus R b , we specify equal probabilities 

P (R a | I) = P (R b | I) = 

1 

2 

, (29)

so their relative plausibility simply becomes the ratio of their evi-

dence, or Bayes’ factor [49] , 

B ≡
P ( τd 

ign 
| R b , I) 

P ( τd 
ign 

| R a , I) 
= 

P (R b | τd 
ign 

, I) 

P (R b | τd 
ign 

, I) 
. (30)

For comparing actual results, we use log 10 to make interpretation

more intuitive: 

	F ≡ log 10 B = F b − F a , (31)

where F ≡ log 10 P ( τ
d 
ign 

| R , I) . As such, R b is more plausible if

	F > 0 and R a more plausible if 	F < 0. 

4.2. Kinetic and measurement uncertainties 

To illustrate how parametric uncertainty affects conclusions, the

uncertainty factors f i in (19) are adjusted artificially, and for sim-

plicity all are assigned the same value f i = f . Typical reported ki-

netic parameter uncertainties have f ≈ 2 [50] , so we take f = 1 . 1 to

indicate relatively trusted rate coefficients and f = 3 . 6 to indicate

significant uncertainty. 

For this demonstration, we assume an additive error model

(14) , which leads to the additive likelihood function (16) . To

demonstrate the role of the uncertainty in the data, we take

σign ,i = σ ′ 
ign 

τign ,i for i = 1 , . . . , N ign in (16) , with σ ′ 
ign 

= 0 . 05 indicat-

ing relatively trusted data and σ ′ 
ign 

= 0 . 25 indicating less reliable

data. These are based on typical shock-tube measurements, which

would have σ ′ 
ign 

≈ 0 . 1 [51] . 

4.3. Numerical evaluation 

Evaluation of the evidence (12) requires high-dimensional inte-

gration over κ. Even the 24 uncertain rate coefficients κ in the rel-

atively small San Diego hydrogen mechanism [36] preclude the use
f tensor-product quadrature rules. A viable alternative is a Monte

arlo sampling of the likelihood (16) over P ( κ | I ) (20) , 

 ( τd 
ign | R ) ≈ ˜ P ( τd 

ign | R I) = 

1 

N MC 

N MC ∑ 

i =1 

P ( τd 
ign | κ(i ) , R , I) , (32)

here { κ(i ) } N MC 
i =1 

are the samples of P ( κ | I ). We quantify the conver-

ence of 

˜ 
 ≡ log ˜ P ( τd 

ign | R , I) (33)

y evaluating (32) M MC times with different random seeds, which

rovides an estimate of the sampling error [52] 

˜ MC = 

[ 

1 

M MC − 1 

M MC ∑ 

j=1 

(
˜ F ( j) − 〈 ̃  F 〉 )2 

] 

1 
2 

, (34)

here ˜ F ( j) is the j th evaluation of ˜ F , and 

 ̃

 F 〉 = 

1 

M MC 

M MC ∑ 

j=1 

˜ F ( j) . (35)

igure 2 shows ˜ σMC relative to 〈 ̃  F 〉 with M MC = 15 for

 × 10 3 ≤ N MC ≤ 294 × 10 3 for two representative pairs of ki-

etic f and measurement σ ign uncertainties. As expected, sampling

rrors decay as N 

−1 / 2 
MC 

. Sampling errors are less than 10% for

 MC ≥ 73 × 10 3 for all cases, which is sufficient to establish N MC 

ndependence to the needed fidelity. 

Though sufficient for demonstrating our species selection

ramework, Monte Carlo integration (32) is not without drawbacks.

ubstantial misalignment between the likelihood (16) and the prior

f the uncertain parameters (20) can require a large number of

amples N MC to achieve convergence. Furthermore, it does not

asily generalize to the case arbitrary priors (such as, for exam-

le, obtained from a previous Bayesian calibration). Methods that

eek to overcome these limitations include nested sampling [53] ,

ower posteriors [54] , annealed importance sampling [55] , har-

onic mean estimators [56] , transitional Markov chain Monte

arlo [57] , the Chib–Jeliazkov method [58] , and multi-level sam-

ling [59] . 

Predictions (27) and predictive uncertainties (28) also require

igh-dimensional integration over κ, but with the added challenge

hat they involve computing the posterior distribution of the un-

ertain parameters (21) . For this, multi-level sampling is used, as

mplemented in the QUESO library [60] . Results in the next section

re insensitive to the number of samples per level, which was con-

rmed by comparing results for 10 4 , 2 × 10 4 , and 4 × 10 4 samples. 

Finally, the reduced-model rate equations (8) are evaluated us-

ng the adaptive error-controlled CVode package [61] , which adap-

ively determines the time step 	t to maintain the local truncation

rror under user-specified absolute E abs and relative E rel tolerances.

esults were confirmed insensitive to error tolerances, and are

resented here for the specific choices of E rel = 10 −8 (dimension-

ess) and E abs = 10 −13 (in kmol/kg) tolerances. The constrained-

quilibrium composition (10) is obtained using CEQ [62,63] . 

.4. Species selection results 

The combined effects of kinetic f and data σ ′ 
ign 

uncertain-

ies on selecting R a versus R b are shown in Fig. 3 , with corre-

ponding reduced-model predictions shown in Fig. 4 for particu-

ar cases. For small rate parameter uncertainties ( f � 1.35), R a =
 H 2 , O 2 , H , HO 2 } is more justified regardless of experimental er-

or σ ′ 
ign 

. Figure 4 a shows that for f = 1 . 1 and σ ′ 
ign 

= 0 . 1 all R a

redictions (27) fall well within 2 σ ign of τ d 
ign 

. In contrast, R b =
 H , O , H , OH } does not match the data so closely, particularly
2 2 
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Fig. 2. Relative sampling error (34) in the Monte Carlo approximation of the evidence (32) for two representative pairs of kinetic f and measurement σ ′ 
ign 

uncertainties. 

Ra Rb

Fig. 3. Species selection evidence (31) for an illustrative range of rate uncertainty 

factors f in (19) and data uncertainty σ ′ 
ign 

in (16) . Colors correspond to 	F for the 

cell-centered ( f, σ ′ 
ign 

) values. Labels indicate cases shown in Fig. 4 . 
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issing the lowest-temperature ignition measurement. This is the

ase despite of the κ re-calibration procedure that aids agreement:

ig. 4 b shows much better agreement than nominal-value predic-

ion Fig. 1 . 

For larger kinetic-parameter uncertainty ( f � 1.35) the R a ver-

us R b conclusion depends on the measurement error. For σ ′ 
ign 

�
 . 175 , R a remains the better candidate, though R b is also close

o the data, as seen in Fig. 4 b. In this case, the broader rate un-

ertainties, f , allow for the re-calibration procedure to utilize κ
hat better match the data. Indeed, the fit-to-data becomes com-

arable to that of R a , though this better fit is offset by the Oc-

am factor in (22) , so R a remains more credible. Also indicative of

his, predictions with R b display a signature feature of overfitting:

hey closely match the data within the calibration range, yet their

redictive uncertainty ˆ σign (28) grows near the end of this range

 Fig. 4 b inset). This is more significant near the lowest-temperature

gnition condition, where it exceeds the measurement uncertainty.

s explained in Section 3.4 , this suggests that R for this f is overly
b 
ependent on the particular data, which reduces confidence in its

verall extrapolative capacity. Overall, R a is favored because it re-

ies less on calibration to achieve its good match, and thus it is a

etter candidate for extrapolative predictions. 

When the data is less reliable, with σ ′ 
ign 

� 0 . 175 , R a is no

onger universally favored. For 0 . 175 � σ ′ 
ign 

� 0 . 2 , the candidate

odels are comparably credible. We note that in such cases, model

veraging [64] , where reduced-model predictions are combined ac-

ording to their corresponding plausibilities, can be used to pro-

ide the best actual prediction. For σ ′ 
ign 

� 0 . 2 , R b is the more cred-

ble. Rate uncertainties are sufficiently large for re-calibration of

 b to yield predictions that fall within the assumed data uncer-

ainty, though predictions (27) are not very close to every data

oint, as seen for R b in Fig. 4 c. In contrast, predictions for R a pro-

ide near-perfect match to the data, though this closeness is not

ighly rewarded given the measurement uncertainty. In this case,

t is R a that displays evidence of overfitting predictions, with es-

ecially high predictive uncertainty at low temperature. 

. Extension to larger mechanisms 

.1. Species selection challenge 

Extending our species selection framework to mechanisms with

ore species follows the same formulation, though the exploding

umber of reduced-model options introduces an additional chal-

enge. With only 9 species, 24 reactions, and (for demonstration)

nly two choices for species selection, the H 2 -air autoignition evi-

ence was evaluated in full for all options. For a large mechanism

ith a broader pool of options, the cost becomes prohibitive. Here,

e develop methods to provide similar species selection and illus-

rate them for methane-air autoignition, modeled with the GRI-1.2

echanism [65,66] , which has 30 reactive species and 177 reac-

ions. Throughout, we chose T ign = 2100 K in (2) to define the ig-

ition time. 

The raw number of candidate sets of represented species is im-

ense. To represent K species, there are 
(

N 
K 

)
candidates, so for

RI-1.2 and only K = 7 , there are over 2 million candidate sets. In-

reasing computational power will alleviate this, but will not soon

rovide a full species selection solution. To overcome this chal-

enge, a CSP time-scale ranking of candidate species is used to nar-

ow the pool, such that options anticipated to be unimportant are

iscarded outright [17,18] . There is no longer proof that the best

ossible model is found, but the procedure finds the best amongst

any options that would be considered viable based on simple

ime-scale analysis, and it is possible to show convergence for the
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Fig. 4. Reduced-model predictions (27) for selected values of f and σ ′ 
ign 

as labeled in Fig 3 : measurements • , with error bars representing 2 σ ign ; reduced-model 

predictions 〈 τ
ign 

〉 (27) ; and predictive uncertainty ±2 ̂ σign (28) . 
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number of candidates considered. The resulting species selection

problem, while still challenging, is tractable. 

5.2. CSP constraint pointers 

CSP [67,68] provides a way to separate the full model, con-

strained by N e elements, into N r rapid modes that quickly exhaust

and collapse subsequent evolution onto a low-dimensional mani-

fold, and N − N r − N e slow modes that evolve the system on this
anifold. The rate-of-change vector (3) is decomposed accordingly

s 

= �r + �s = 

N r ∑ 

r=1 

ϕ 

r a r + 

N−N e ∑ 

s = N r +1 

ϕ 

s a s , (36)

here a r and a s are the basis vectors of the fast and slow sub-

paces, respectively, approximated by the eigenvectors of the Jaco-

ian matrix ∂ z �. The amplitude of the m th mode is 

 

m = b 

m · �, (37)
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Fig. 5. CH 4 –air autoignition CSP constraint pointers Q̄ k (42) for φ = 1 , p = 1 atm, and N ign = 11 initial temperatures uniform in the range 1500 K ≤ T 0 ≤ 1700 K. 
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ith b m · a m 

= 1 . The condition that the fast modes are unimpor-

ant for evolution on the manifold leads to N r nonlinear constraints

 

r = b 

r · � = 0 for r = 1 , . . . , N r , (38)

hich specify the manifold [7] . In practice, the number of ex-

austed modes N r is selected to satisfy a tolerance threshold 

N r ∑ 

r=1 

τr a 
j 
r ϕ 

r 

∣∣∣∣ < tol rel | z j | + tol abs , for j = 1 , . . . , N, (39)

here τr = 1 / | λr | is the r th fastest time scale, based on the r th

igenvalue λr of the Jacobian matrix ∂ z �. The tolerances tol rel and

ol abs are relative and absolute tolerances. While tol rel is dimen-

ionless, tol abs matches the units of z (kmol/kg). A new version of

he exhaustion criterion (39) provides a less conservative (larger)

stimate of N r [69] , which could allow for a sharper distinction

etween “slow” and “fast” species. However, (39) is sufficient for

orting species prior to Bayesian selection. 

The contribution of the slow modes to the k th species is deter-

ined by the projection 

 k = 

∣∣∣∣ N−N e ∑ 

s = N r +1 

a k s b 
s 
k 

∣∣∣∣. (40)

he resulting constraint pointer Q k is large if this species evolves

lowly. Standard practice is to weigh Q k by the mass fractions y k 
o avoid selecting unimportant trace species that would be desig-

ated slow by this measure [18] , and since conditions evolve, this

s usually determined over a relevant time period t ∈ [0, t final ], 

 k = 

1 

t final 

∫ t final 

0 

Q k (t) y k (t ) d t , (41)

here Q k then serves as the global constraint pointer for the k th 

pecies. Here, t final is the time for which N r = N − N e satisfies (39) ,

ndicating that all modes have exhausted. 

A complexity is that the standard Q k pointers depend on the

articular initial condition ( T 0 , p , φ), though calibration data for

pecies selection will in general cover a range of conditions. For-

unately, this dependence is often weak, and our species selection

rocedure is insensitive to minor changes in the ordering. To ac-

ount for the range of conditions, the pointers are simply averaged

ver the N ign calibration scenarios, 

¯
 k = 

1 

N ign 

N ign ∑ 

i =1 

Q 

(i ) 
k 

, (42) 

here Q 

(i ) 
k 

is the global pointer for the k th species based on the

 th ignition scenario. This is similar in spirit to the time-averaged

ass-fraction-weighing in (41) . A similar challenge is that the
ointers also depend on uncertain kinetic parameters κ, so the

ointers are also random variables. However, in none of our exam-

les is the uncertainty in any rate parameter so large to substan-

ially upset the CSP species ordering. The range of time scales for

SP ordering far exceeds rate uncertainties. Thus, the CSP point-

rs (41) , as used for ordering species for Bayesian selection, do not

etain their uncertainty. Instead, they are simply evaluated at the

ominal values of rate coefficients. 

Nominal mean CSP constraint pointers Q̄ k (42) are shown in

ig. 5 , for tol abs = 10 −13 and tol rel = 10 −5 in (39) . Species ordering

hanges only in minor ways—usually switching the order of neigh-

ors with nearly identical Q̄ k —for any tested tol abs ∈ 

[
10 −10 , 10 −13 

]
mol/kg and tol rel ∈ 

[
10 −3 , 10 −5 

]
. 

.3. CSP-guided Bayesian species selection 

To initialize species selection, we pick the fuel and oxidized

 0 = { CH 4 , O 2 } as obviously important species to be the initial

et. The algorithm then proceeds in stages, each adding one rep-

esented species in two steps: 

1. Candidate selection sets : At stage m , with represented R m 

,

the unrepresented species U m 

are sorted in descending order

with respect to their CSP constraint pointer, the first being

the slowest. We form a list of n c candidate species sets A m 

by augmenting R m 

with each of the first n c species in U m 

, 

A m 

= 

n c ⋃ 

p=1 

{R m 

∪ { s p }} , s p ∈ U m 

. (43)

The search depth n c is thus the number of options consid-

ered in each stage. For the example in Fig. 5 and n c = 4 , the

first candidate species to augment R 0 are H 2 O, CO, CO 2 , and

O. The cost of the search is thus proportional to n c ; multiple

n c values are consider in the following demonstrations. 

2. Species selection : For every candidate in A m 

, we compute

the posterior probability (11) . This requires model priors

P (R 

p 
m 

| I) , though without any reason here to favor any of

the candidates, their priors are uniform, so the posterior

probabilities depend only on the evidence (12) . The current

set of represented species R m 

is then augmented with the

species with largest evidence, denoted by s ∗: 

R m +1 = R m 

∪ { s ∗} . (44)

As a search algorithm, the approach is designated as greedy

ince it makes locally optimal choices [70] ; in this sense, it is sim-

lar to the algorithm proposed by Hiremath et al. [15] for RCCE

pecies selection for trusted rates. The key difference, in addition



228 E. Cisneros-Garibay, C. Pantano and J.B. Freund / Combustion and Flame 208 (2019) 219–234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Ignition-time distribution, based on the parametric uncertainty of the GRI- 

1.2 mechanism [20] , for φ = 1 , p = 1 atm, and T 0 = 1500 (K) . 

Fig. 7. Full-model ignition times for CH 4 -air for φ = 1 , p = 1 atm, and initial tem- 

peratures 1500 K ≤ T 0 ≤ 1700 K. The error bars represent full-model data uncer- 

tainty (46) . 
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to limiting the number of candidate species using constraint point-

ers, is that it accounts for multiple uncertain factors using Bayesian

evidence. It is demonstrated in the following section. 

6. Demonstration: CH 4 - Air Autoignition 

We continue to use the GRI-1.2 mechanism to model reac-

tions, and assume all of its rate coefficients are uncertain and nor-

mally distributed about their nominal values, per (19) and (20) .

Concurrently, we illustrate a case in which no experimental mea-

surements are available to inform species selection, and present

a procedure to generate calibration data using the full model in

Section 2.1 . In the H 2 -air demonstration of Section 4 , an additive

likelihood (16) was used for simplicity. Here, a multiplicative like-

lihood (18) is used instead because, as we shall see, it provides

a clearer comparison between the generated calibration data and

reduced-model predictions τ
ign 

( κ, R ) . 

6.1. Calibration data 

The model reduction procedure—the main goal of this paper—is

the same irrespective of the source of the data; the approach only

depends on the goals and available information for any particu-

lar application. If the goal is predicting ignition, say in a turbulent

flow, and there is adiabatic reactor data available for similar con-

ditions, then there is an opportunity to tailor the reduced model

based on that data within this framework. For the H 2 -air autoigni-

tion example, we used experimental data τ d 
ign 

to select species and

re-calibrate uncertain rate coefficients. If the important conditions

for an application are less clear, or if auxiliary data is unavailable,

direct generation of calibration data is a viable alternative. In such

cases, the full model described in Section 2.1 , which despite the

uncertainty in the rates is expected to be of higher fidelity than

any reduction because it resolves all time scales, can be used to

generate data to calibrate reduced models. Since there is no exper-

imental uncertainty, in this case σ ign stems from the underlying

kinetic uncertainty f i of the mechanism, for which we take estab-

lished values [20] . 

Even for model-generated data, the first step is selecting condi-

tions representative of the prediction scenario. For illustration, we

again take φ = 1 , p = 1 atm, and 1500 K ≤ T 0 ≤ 1700 K. Propaga-

tion of kinetic uncertainties, given by (19) and (20) , through the

full model (3) yields ignition time predictions (2) with uncertainty.

Ignition times are expected to be approximately exponentially sen-

sitive to at least some kinetic parameters κ. Therefore, it is not sur-

prising that full-model predictions τ full 
ign 

≡ τ
ign 

( κ, S) , for full set of

species S, span several orders of magnitude, as shown in Fig. 6 . Us-

ing the logarithm of ignition time thus make a more natural met-

ric. Each data point generated with the full model is taken to be

the expectation 

μg 
ign 

= 

∫ 
log 

(
τ full 

ign 

τref 

)
P ( κ | I) d κ, (45)

where τref = 1 μs . The uncertainty in τ full 
ign 

is the corresponding

standard deviation, 

σ g 
ign 

= 

{ ∫ [
μg 

ign 
− log 

(
τ full 

ign 

τref 

)]2 

P ( κ | I) d κ

} 

1 
2 

. (46)

As for the evaluation of evidence integrals (12) , the 177 uncer-

tain rate coefficients in the GRI-1.2 mechanism preclude tensor-

product quadrature for (45) and (46) , so Monte Carlo integration is

used. In this case, it entails averaging full-model evaluations over
 MC samples of the uncertain rate parameters κ from their distri-

ution (20) , 

g 
ign 

≈ 1 

N MC 

N MC ∑ 

i =1 

log 

[ 

τ
ign 

(
κ(i ) , S 

)
τref 

] 

, (47)

g 
ign 

≈

⎧ ⎨ 

⎩ 

1 

N MC − 1 

N MC ∑ 

i =1 

[ 

μg 
ign 

− log 

( 

τ
ign 

(
κ(i ) , S 

)
τref 

) ] 2 
⎫ ⎬ 

⎭ 

1 
2 

, (48)

here κ( i ) is the i th sample from P ( κ | I ). 

The calibration data, shown in Fig. 7 , is generated for N ign = 11

niform initial temperatures in the range 1500 K ≤ T 0 ≤ 1700 K.

ollowing the same procedure for establishing convergence of

onte Carlo integration in Section 4.3 with M MC = 15 , the sam-

ling error of μg 
ign 

and σ g 
ign 

is less than 1% for N MC = 73 × 10 3 . The

ull model was evaluated using CVode [61] ; results are presented

ere for relative E rel = 10 −8 and absolute E abs = 10 −13 kmol / kg tol-

rances, and were insensitive to these. 
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Fig. 8. Selected species and their evidence (12) for R 0 = { CH 4 , O 2 } and different n c . 
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.2. Numerical evaluation 

The evidence integrals (12) for CH 4 -air autoignition are evalu-

ted using Monte Carlo sampling, as described in Section 4.3 . Re-

ults are presented for N MC = 73 × 10 3 with an estimated sampling

rror of less than 1% for M MC = 5 . As for the H 2 -air example, pre-

ictions (27) and predictive uncertainties (28) are computed us-

ng multi-level sampling [59] . The key difference is that, to speed

p convergence, the dimension of the uncertain-parameter space is

educed through global sensitivity analysis [71,72] , and the Markov

hain is constrained to a small subset of active parameters (identi-

ed a priori), with all others held at their nominal values. Results

re insensitive to the number of samples per level for 5 × 10 3 , 10 4 ,

nd 2 × 10 4 samples. 

.3. Results 

Selected species for K up to 15 and their supporting evidence

re shown in Fig. 8 for the initial set of represented species R 0 =
 CH 4 , O 2 } and how this is augmented for search-depths n c = 4 , 6,

nd 8 in (43) . Note that all these n c values yield the same next

hree species: CO, then CO 2 , and finally H 2 O. For K ≥ 5, species

election depends on n c , though the evidence is only weakly

ensitive to these differences. The overall cost is proportional to

 c , but the algorithm searches deeper into the species ranking

 Fig. 5 ). This search depth affects, for example, how early CH 3 is

elected, which leads to modestly more plausible sets of repre-

ented species, at least once it is complemented with O or OH.

his is not unexpected, given the understood controlling role that

he methyl radical CH 3 has on methane ignition [19] , though its

dditional supporting evidence in the reduced model is marginal. 

In all the cases in Fig. 8 , the evidence grows rapidly up to K = 5

nd is nearly constant thereafter. The eventual peak K only weakly
epends on n c : K = 6 for n c = 4 ; K = 8 for n c = 6 ; and K = 7 for

 c = 8 . We denote this reduced-model size by K 

∗, and the corre-

ponding set of represented species by R 

∗. Subsequent addition of

pecies to R 

∗ is not significantly supported by the data, and all

 

∗ reproduce full-model ignition time predictions (45) within their

redictive uncertainty (46) , as seen in Fig. 9 . This balance of fit-

o-data and kinetic uncertainty is accomplished without heavy re-

iance on the re-calibration of the uncertain rate coefficients, which

ould be penalized by the Occam factors (22) . 

Both nominal and re-calibrated reduced-model predic-

ions (27) are compared to full-model data for a representative

cenario in Fig. 10 . With calibration, all reduced models with

vidence-based selection of species can reproduce the full-model

ata well within its uncertainty, though those with K = 2 to 4 rely

eavily on the re-calibration described in Section 3.4 to compen-

ate for their poor nominal fit-to-data. This dependence on data

s penalized by the Occam factors in (22) , which suppresses their

lausibility in Fig. 8 . This illustrates how the framework guards

gainst over-reduction through the exploitation of the uncertainty

f the parameters. A more focused study on the effects of kinetic

ncertainties on RCCE model size follows in Section 7 . 

The ultimate purpose of model reduction is to reduce compu-

ational cost. This is quantified in Fig. 11 , based on the time of one

valuation for a representative calibration scenario and nominal ki-

etic parameters. In general, the larger n c , the more expensive the

esulting reduced model, since larger n c enables faster species, as

uantified by the CSP pointers, to be selected. Indeed, for our CH 4 -

ir example, despite the marginal added evidence, species selected

ith n c = 8 substantially increase the computational cost for K ≥ 7,

hich coincides with the leveling-off of the evidence ( Fig. 8 ). This

s due to the rejection of key slowly-evolving species O in favor

f radicals that evolve on CSP fast time scales. The species selec-

ion framework provides the relative evidence supporting a model,



230 E. Cisneros-Garibay, C. Pantano and J.B. Freund / Combustion and Flame 208 (2019) 219–234 

Fig. 9. Reduced-model predictions (27) using selected species R 

∗ for (a) n c = 4 , (b) 6, and (c) 8 in Fig. 8 : reduced-model predictions 〈 τ
ign 

〉 (27) ; 

predictive uncertainty ± ˆ σign (28) ; and full-model data • , with error bars representing its corresponding uncertainty (46) . 

Fig. 10. Nominal • and re-calibrated � (27) reduced-model predictions for T 0 = 1600 K and n c = 6 . The solid line and shaded region represent the full-model data 

τ g 
ign 

(45) and ignition-time standard deviation uncertainty ±σ g 
ign 

(46) . The error bars represent reduced-model predictive uncertainty ± ˆ σign (28) . 

Fig. 11. Computation time of a reduced-model evaluation for ignition time for φ = 1 , p = 1 atm and T 0 = 1600 K using nominal kinetic parameters. Represented species 

match those in Fig. 8 . For this example, CVode [61] was used with dimensionless E rel = 10 −8 and E abs = 10 −13 kmol/kg. 
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which can then be weighed against the cost of including additional

species, especially if they are faster. 

The plausible sets of represented species R m 

in Fig. 8 include

full and partial products CO 2 , H 2 O and CO, and key radicals CH 3 ,

O and OH, along with the reactants. These are commonly se-
ected in established species selection methodologies under the

ssumption that the GRI-1.2 is fully trusted [15,18,73] . Here, this

as asserted quantitatively without disregarding rate-parameter

ncertainty based on the evidence computation, such that the ben-

fits of more costly models can be weighed with confidence. This
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Fig. 12. CH 4 –air autoignition CSP constraint pointers Q̄ k (42) for the range of initial conditions in Table 1 . 

Fig. 13. Selected species and their evidence for R 0 = { CH 4 , O 2 } , n c = 4 , and different global uncertainty factors f in (19) . 
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Table 1 

Ignition-time measurements [74] in lean ( φ = 0 . 5 ) CH 4 -Air mixtures 

used for rate coefficient re-calibration and species selection. 

T 0 [K] p [atm] τ d 
ign 

[ μs] 

1536 3.42 295 

1537 3.21 262 

1584 3.44 189 

1585 3.86 195 

1644 3.76 100 

1653 3.16 101 

1  

w

7

 

p  

t  

i

s one of the key contributions of this framework. The other is that

t can be applied to less understood mechanisms, where rate ki-

etics might be less certain and key pathways unclear. 

. Kinetic uncertainty and model size 

As for the H 2 -air autoignition example of Section 4 , additional

xperimental data can be used to target a particular regime of ap-

lication, or guide the determination of reduced model size (and

ost). This is considered in this section. 

.1. Data & uncertainty 

The ignition-time measurements of Zhukov et al. [74] in

able 1 are used for this demonstration with the additive error

odel (14) . The provided errors estimates for these data are no

arger than 10%, though to facilitate convergence and focus on the

mpact of kinetic uncertainties, we simply take σign ,i = σ ′ 
ign 

τ d 
ign ,i 

n (16) , with σ ′ 
ign 

= 0 . 1 . As in Section 4 , all reactions in the GRI-
.2 are ascribed a common uncertainty factor f i = f in (19) , which

e will vary to illustrate its impact on selected model size. 

.2. CSP species ordering 

Following the procedure in Section 5.2 , the CSP constraints

ointers are shown in Fig. 12 , with results that are independent of

he CSP tolerances tol abs = 10 −13 and tol rel = 10 −5 in (39) For this

llustration, we use n c = 4 . 
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Fig. 14. Nominal • and re-calibrated � (27) reduced-model predictions for the first calibration scenario in Table 1 ( T 0 = 1536 K and p = 3 . 42 atm) using species selected in 

Fig. 13 for parametric uncertainty factors (a) f = 1 . 2 , (b) 1.8, and (c) 2.4. The solid line and shaded region represent the measurement and its σ d 
ign 

uncertainty. The 

error bars on re-calibrated predictions (mostly smaller than the symbols) represent predictive uncertainty ˆ σign (28) . 
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7.3. Results 

Selected species up to K = 15 and their evidence for different

values of uncertainty factor f are shown in Fig. 13 . Species ordering

differs substantially between f = 1 . 2 and f = 1 . 8 , but is identical

for f = 1 . 8 and f = 2 . 4 . The evidence also differs most between

f = 1 . 2 and f = 1 . 8 , being insensitive to f for f > 1.8. In general,

selected species are consistent with the analogous n c = 4 case for

full-model data of Section 6.3 . 

For small kinetic-parameter uncertainty f = 1 . 2 , addition of

species is supported up until K 

∗ = 13 . However, for f > 1.2, the

plausibility of models with 7 ≤ K ≤ 12 is comparable to that
f K ≥ 13 for f = 1 . 2 . It also saturates at K 

∗ = 7 . For f = 2 . 4 ,

pecies addition is supported only up to K 

∗ = 8 . In this case,

he greater kinetic uncertainty allows for a less restrictive re-

alibration of κ, and thus weaker Occam factors in (22) . Predic-

ions, shown in Fig. 14 , confirm this: they match the data closely

or K ≥ 5, but reduced models with 5 ≤ K ≤ 12 rely heavily on re-

alibration. Thus, they are Occam-penalized, though less so for

roader kinetic-parameter uncertainties. These results quantita-

ively support the notion that fewer species need to be repre-

ented when the kinetic mechanism is less trusted. For the gen-

ral RCCE user, the predictive accuracy of models selected with

ur framework is at least that for simply accepted rates, and
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ikely significantly better in some cases as we see in some of our

emonstrations. 

. Summary & additional discussion 

In summary, we have introduced a Bayesian framework for

CCE species selection under kinetic uncertainty. Its principal

trength is that it guards against overfitting and, consequently,

ost confidence in the predictive (extrapolative) capacity of the

educed model. Selected species balance fit-to-data against Oc-

am factors. We demonstrated these basic properties on a simple

 2 -air autoignition problem, where we showed how kinetic and

easurement uncertainties affect the plausibility of our choices.

e then extended our framework to more complex mechanisms

y limiting the number of candidate species through CSP point-

rs, and demonstrated this on CH 4 -air autoignition. Specifically,

e considered two cases that differ in the source of calibration

ata: (i) one where relevant data is missing, so it is generated

rom the full model; and (ii) one where experimental data is used

o tailor species selection to relevant scenarios and assess the

ole of kinetic-parameter uncertainties in model size. The results

re mostly consistent with what might be expected for methane,

hough obtained with firm quantitative basis. The real strength of

he method would be realized for still more complex and less-

nderstood chemical models. 

The key component of the approach is that quantitative evi-

ence (12) , accounting for different sources of input uncertainty,

uides reduced-model selection while guarding against overfitting

hrough the Occam factors (22) . This way the selected species and

educed models are expected to be accurate away from the cali-

ration scenarios. Possible extensions of this framework might en-

ail (i) the inclusion other combustion quantities of interest and

roader ranges of calibration scenarios, (ii) accounting in more de-

ail for the uncertainty of the Arrhenius parameters, (iii) the in-

lusion other uncertainties such as thermodynamic properties, and

iv) the use of linear combinations of species as candidate con-

traints. This last extension is straightforward, as our framework

an easily select from among these type of constraints. In our

 2 -air autoignition demonstration, for example, one may also as-

ess the plausibility of a third candidate reduced model, say R c =
 H 2 , O 2 , H , O + OH + H 2 O } and compare it against P (R a | τd 

ign 
, I)

nd P (R b | τd 
ign 

, I) , so long as the constraints R are linearly inde-

endent. 

It should be recognized that this species selection procedure in-

olves significant up-front computation. To estimate evidence in-

egrals for the methane application of Section 7 , over 60 million

gnition-time predictions were computed. Although this is obvi-

usly far more costly than just making a best-fit, it can be justi-

ed for the information it provides. This is especially true if the

educed model is to be used in a flow-coupled simulation, the

omputational cost of which can easily dwarf that of species selec-

ion. Advancing computational resources will also, of course, con-

inue to make this up-front cost less and less of a concern, allow

or the evaluation of more possible choices, and enable the in-

orporation of more parametric uncertainties and data. However,

he evaluation of evidence integrals (12) for larger data sets, dif-

erent quantities of interest and more uncertain parameters can

till result in a computationally taxing inference problem. In this

ense, the framework could benefit from the integration with the

ethod of uncertainty minimization (MUM) [45] , an efficient sim-

lification of the more general Bayesian methodology. In MUM, the

ombustion models would be approximated with surrogates, and

he posterior PDF of the parameters (21) would be approximated

s Gaussian, with mean κ∗ and covariance matrix �∗ . The log-

vidence (22) would then be available analytically in terms of the
pproximate posterior statistics, 

(R , ηd ) ≈ −1 

2 

N η∑ 

i =1 

[
ηd 

i 
− ηi ( κ

∗, R ) 

ση,i 

]2 

, (49) 

(R , ηd ) ≈ 1 

2 

‖ κ∗‖ 

2 + 

1 

2 

log 
∣∣�−1 

∗
∣∣, (50) 

here ηd denotes calibration data for a combustion quantity of in-

erest. This form for (50) is identical to the linearization (26) we

nalyzed as a model Occam factor. 

The ultimate cost of reduced-model evaluation was not directly

ncluded, though it is also useful for informing decisions in face of

ost concerns. The cost of RCCE depends on the time scales and

umber of represented species, so quantifying the supporting ev-

dence of selecting any particular K species can guide subsequent

ecisions based on cost. Perhaps most importantly, it also asserts

hen any cost of increasing K is unjustified. The final methane ex-

mple of Section 7 incorporated additional experimental data with

his as its primary purpose. 
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